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Abstract. N-mixture models provide an appealing alternative to mark–recapture models, in that
they allow for estimation of detection probability and population size from count data, without requir-
ing that individual animals be identified. There is, however, a cost to using the N-mixture models:
inference is very sensitive to the model’s assumptions. We consider the effects of three violations of
assumptions that might reasonably be expected in practice: double counting, unmodeled variation in
population size over time, and unmodeled variation in detection probability over time. These three
examples show that small violations of assumptions can lead to large biases in estimation. The viola-
tions of assumptions we consider are not only small qualitatively, but are also small in the sense that
they are unlikely to be detected using goodness-of-fit tests. In cases where reliable estimates of popula-
tion size are needed, we encourage investigators to allocate resources to acquiring additional data,
such as recaptures of marked individuals, for estimation of detection probabilities.

Key words: abundance estimation; Bayesian P-value; count data; detection probability; N-mixture model;
robustness.

INTRODUCTION

The N-mixture model of Royle (2004) and its extensions
(e.g., Dail and Madsen 2011) have great appeal to field biolo-
gists in that they provide a means for estimating detection
probability and population size without the expense, inconve-
nience, and difficulty of mark–recapture, distance sampling,
or other methods of estimation historically used to estimate
detection rates. The model is easy to describe and implement,
and can be fit to a wide variety of field sampling studies in
which data were collected from repeated counts at a series of
sampling sites. Counts Yij are assumed to be conditionally
independent binomial random variables with success parame-
ters pij (parametric functions of observed covariates) and
indices Nij; in symbols, Yijjpij �BðNij; pijÞ. Typically, index
i ¼ 1; 2; . . .; n distinguishes sites, and index j ¼ 1; 2; . . .; r dis-
tinguishes repeated counts at sites. The values Nij are inter-
preted as the number of individuals present at site i and time
j, and the pij as associated detection probabilities.
The basic model (Royle 2004) has Nij � Ni, where Ni are

Poisson random variables with rate parameters k, denoted
Ni �PoisðkÞ. The basic model also assumes constant detec-
tion probabilities pij � p. Elaborations on the basic model are
straightforward, including alternative distributions for popu-
lation sizes, and covariate models for detection probabilities.
This methodological simplicity has led to widespread use

of N-mixture models by ecologists. As of March 2018, Royle
(2004) and Dail and Madsen (2011) have received 747 and

182 citations, respectively. N-mixture based approaches have
been suggested as alternative design and analysis models for
surveys such as the North American Breeding Bird Survey
(Riddle et al. 2010, Hostetler and Chandler 2015).
In this paper, we examine the sensitivity of N-mixture models

to violations of assumptions. We stress from the outset that, in
principle, N-mixture models work: if the model is correct (an
exact depiction of the data generating process), if the parame-
ter values are not extreme, and if we have adequate data, the
N-mixture models can be estimated with high precision.
Though we note with concern a tendency toward excessive
optimism about what constitutes adequate data and reasonable
parameter values, our focus in this note is on the sensitivity of
inference to violations of fundamental model assumptions.
We use the basic N-mixture model (with constant k and p) as

the basis of our evaluations. We present three examples in
which data are generated with slight violations of the model’s
assumptions. In the first, we allow the possibility that individual
animals may be accidentally counted twice, violating the bino-
mial assumption. In the second, we allow violation of the con-
stant abundance assumption within sites; in the third, we allow
violation of the constant detection probability assumption.
In each case we assess goodness of fit under the basic

N-mixture model. The examples we present show that even
slight violations of model assumptions can lead to profound
biases in estimation. Large departures from model assump-
tions might be caught by goodness-of-fit testing. However,
many of the departures we consider are small enough to
evade testing, yet still lead to substantial bias.
These results have implications beyond the basic model.

While it may be possible to model some of the departures
from the basic model, it may also be impossible to know that
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a more complex model is needed, or which one is needed. If
the basic model cannot be relied upon, neither can its many
elaborations. Our conclusion is that for estimating absolute
abundance, there is no substitute for mark–recapture analy-
sis: N-mixture modeling relies too heavily on questionable
and poorly verifiable model assumptions.

METHODS

Baseline model and model fitting

As a shared baseline for our examples, we generated data
sets with n ¼ 50; k ¼ 100, and p ¼ 0:42. For this and all sub-
sequent simulations we analyzed 1,000 replicate data sets
with r ¼ 3, and 1,000 with r ¼ 6.
The sample sizes and parameter values considered in this

and the following illustrations may seem generous, especially
when compared to values deemed sufficient by some authors.
Yamaura et al. (2016) suggest r ¼ 2; 3, or 4, n� 20, p� 0:20,
and k� 0:50 as “minimal conditions for obtaining adequate
performance of community abundance models.” Our choice
of larger parameter values and more substantial sample sizes
was intended to provide favorable circumstances for fitting the
simplest N-mixture model, and a reasonable context for evalu-
ating model violations that might be anticipated in practice.
We fit the N-mixture model using Bayesian analysis with

vague priors ½k� / 1=k and p�Uð0; 1Þ. Markov chain
Monte Carlo was used to evaluate posterior distributions.
MCMC based on full conditionals for k and p leads to poor
mixing, so we used a Metropolis-Hastings algorithm with
candidate generation designed to approximate hierarchically
centered analysis; details are given in Appendix S1. Mixing
was good, with autocorrelations near zero at lag 40; we used
chains of length 100,000.
Because posterior distributions for the abundance param-

eter tend to be positively skewed, we used the posterior med-
ian as a point estimator, rather than the posterior mean. The
biases we report are positive in all cases, and would be even
larger if the posterior mean were used as a point summary.
95% credible intervals were defined by the 2.5th and 97.5th
percentiles of posterior distributions.
We also analyzed each data set using package unmarked in

R (Fiske and Chandler 2011) in order to compare Bayesian
results with frequentist. Evaluation of 95% confidence inter-
vals was based on assumptions of asymptotic normality.

Goodness of fit

We used calibrated Bayesian P-values to assess goodness of
fit. For each posterior sample (pðbÞ;NðbÞ

i ), b ¼ 1; 2;
. . .; 100; 000 we generated data Y ðbÞ

ij �BðNðbÞ
i ; pðbÞÞ, then

calculated

T ðbÞ ¼
X

i

X

j

ðY ðbÞ
ij �NðbÞ

i pðbÞÞ2

NðbÞ
i pðbÞð1� pðbÞÞ

:

The Bayesian P-value, PB, is the proportion of samples
for which T ðbÞ exceeds the value of the same statistic, com-
puted with actual data Yij rather than Y ðbÞ

ij . Tests based on
Bayesian P-values are often conservative, favoring the null

hypothesis (Nott et al. 2018). We thus calculated calibrated
Bayesian P-values P�

B designed to overcome this conser-
vatism, which we now describe.
Under the null hypothesis, the P-value of a continuous test

statistic should have a uniform distribution on (0,1). That is,
under the null hypothesis, Pr(P ≤ t) = t, for all t 2 ð0; 1Þ. In
many cases, Bayesian P-values have null distributions that are
underdispersed relative to the uniform distribution. Thus we
cannot assume that FðtÞ ¼ PrðPB � tÞ � t. We used our base-
line simulations to obtain estimates F̂ðtÞ. In subsequent simu-
lations, we calculated calibrated Bayesian P-values as
P�
B ¼ F̂ðPBÞ. For a fixed level a ¼ 0:05 test, determining

whether P�
B\0:05 is accomplished by comparing the

observed value PB to the fifth percentile of Bayesian P-values
from the baseline simulation. This process of calibrating the
Bayesian P-value is precisely in the spirit of Hjort et al.
(2006), though with the advantage (conferred by application
in context of simulations) of having known parameters under
the null hypothesis. The use of P�

B boosts power to detect
violations of the null hypothesis while maintaining the
appropriate a level of the test.
We chose to use a Bayesian evaluation of goodness of fit to

avoid uncertainties arising from use of asymptotic frequentist
methods. For instance, during the course of our analyses we
encountered evidence that frequentist CI coverage rates actu-
ally increased from nominal levels under slight violations of
model assumptions. This suggests a weakness of the asymp-
totic methods. Our message, however, is about the N-mixture
models themselves, rather than the methods used to fit them.
Rather than getting bogged down in the technical issues, we
used Bayesian methods as the most reliable.

Violations of model assumptions

We now turn our attention to three sets of simulations in
which the assumptions of the N-mixture model are violated.

Simulation 1: violation of binomial assumption through acci-
dental double counting.—As noted by Barker et al. (2017)
the absence of marks on animals may make it impossible to
know whether an animal has been counted more than once
on a single sampling occasion. Here we examine the conse-
quences of accidental double counts.
N-mixture modeling assumes two possible outcomes per

animal on each sampling occasion: the animal is not detected,
or detected and recorded as a single animal. Suppose instead
that there are three possible outcomes: the animal is not
detected (with probability a), detected and correctly recorded
as a single animal (with probability b), or detected and incor-
rectly recorded as two distinct animals (with probability c).
Our intuition might be that if c is small, this departure from
the binomial assumption will be of little consequence.
We generated data with n ¼ 50, r ¼ 3 and 6, k ¼ 100,

a ¼ 0:58, and c ranging from 0.02 to 0.10 in increments of
0.02. In each case, the probability an animal is observed is
1�a = 0.42, as in the baseline simulation. The baseline cases
in which the assumptions of the N-mixture model are met
can be described as having c ¼ 0.

Simulation 2: unmodeled variation in Nij.—The basic model
of Royle (2004) posits Nij � Ni �PoisðkÞ. Suppose instead that
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Nij ¼ mi þ Aij where mi �Poisðh1Þ and independently Aij �
Poisðh2Þ; the mean abundance is k ¼ h1 þ h2. The number of
animals available for counting at site i varies across “replicates”
j. Such variation could result from animal movement between
sampling occasions. There is, nonetheless, a common site effect
(baseline abundance) so Nij are positively and equi-correlated,
with correlation q ¼ h1=ðh1 þ h2Þ ¼ h1=k. The parameter q
can also be understood as the proportion of variation in popu-
lation sizes that occurs among sites. The basic N-mixture model
assumes that all of this variation occurs among sites; our simu-
lations allow 100(1�q)% of this variation to occur within sites,
among sampling occasions.
We generated data with n ¼ 50, r ¼ 3 and 6, p ¼ 0:42,

k ¼ 100, and q ¼ 0:90; 0:80; 0:50; 0:20, and 0.10. The base-
line cases in which the assumptions of the N-mixture model
are met have q ¼ 1.

Simulation 3: unmodeled variation in pij .—The basic model
of Royle (2004) posits pij � p, for j ¼ 1; 2; . . .; r. Suppose
instead that pij are random variables with mean p and vari-
ance r2 [ 0. Variation in detection probabilities could result
from myriad environmental factors; the notion of a constant
p is an almost obvious fiction. We generated data with
n ¼ 50, r ¼ 3 and 6, k ¼ 100, and pij � bða; bÞ, with parame-
ters a and b chosen so that p ¼ a=ðaþ bÞ ¼ 0:42 and
r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞ=ðaþ bþ 1Þp ¼ 0:01; 0:02; 0:03, and 0.04. The
baseline cases in which the assumptions of the N-mixture
model are met can be described as having r ¼ 0.

RESULTS

Results for Simulations 1, 2, and 3 are given in Tables 1, 2,
and 3, respectively. In the baseline simulations, an N-mixture
model was the data generating model. Results for these are
included for comparison with each set of simulation results;
these are the cases with c ¼ 0; q ¼ 1, and r ¼ 0, respectively.
Across all of our simulations, Bayesian and frequentist

point estimates of k were basically in agreement. When the
N-mixture model was the data generating model, nominal

95% credible intervals had coverage rates of 95.1% and
95.6%; nominal 95% confidence intervals had coverage rates
of 95.2% and 94.2%. Subsequently, we restrict our discus-
sion to Bayesian estimates.
We note that there is some bias in the estimation of k even

in the baseline simulations. This may well be small-sample
bias, as it is smaller for the case r ¼ 6 than for r ¼ 3.

Simulation 1: violation of binomial assumption through acci-
dental double counting.—Estimation of k is badly biased
when c[ 0. Consider the case c ¼ 0:02. Making allowances
for the small sample bias of the baseline case (with c ¼ 0),
the additional bias due to model misspecification is (125.5/
106.5�1)100% = 18% with r ¼ 3; with r ¼ 6 the additional
bias is 21%. This substantial bias arises with only a slight
violation of model assumptions: with c ¼ 0:02 less than one
in twenty animals observed is accidentally counted twice.
With c ¼ 0:04, the rate of double counts is still low, and the
power to detect model inadequacy is low, but the bias due to
model misspecification is 34% for r = 3 and 39% for r = 6.
Misspecification bias is large relative to nominal preci-

sion, even in cases where there is little power to detect model
misspecification. Thus we might conclude that the null
model is satisfactory in cases where credible interval cover-
age is substantially lower than nominal. With r ¼ 3 and
c ¼ 0:04, there is only a 40.7% chance of rejecting the ade-
quacy of the N-mixture model, and the credible interval cov-
erage is only 56.2%; with r ¼ 6 and c ¼ 0:04, the probability
of rejecting the N-mixture model increases to 63.0%, but the
credible interval coverage drops to 16.7%.
For larger values of c, a test of significance might be useful

to screen for model inadequacy. We were interested in know-
ing whether such screening would reduce the bias of k̂, so we
computed k̂NS, the mean value of the estimator in cases where
the model would be deemed acceptable. The bias of estima-
tors remains when the model is not rejected (see Table 1).

Simulation 2: unmodeled variation in Nij.—Results for Simu-
lation 2, in which there is unmodeled variation in population

TABLE 1. Effects of accidental double counts on estimation of mean population abundance.

r c kMLE k̂ SD ðk̂Þ Nom 95% PB\0:005 P�
B\0:05 k̂NS

3 0.00 105.1 106.5 21.8 0.951 0.000 0.050 105.9
3 0.02 124.9 125.5 26.4 0.836 0.008 0.187 124.1
3 0.04 142.6 143.1 32.2 0.562 0.056 0.407 140.7
3 0.06 158.8 159.0 34.9 0.318 0.162 0.657 158.5
3 0.08 176.8 176.7 36.3 0.120 0.290 0.811 170.4
3 0.10 191.5 193.5 40.4 0.044 0.498 0.891 197.4
6 0.00 101.3 101.7 12.4 0.956 0.000 0.050 101.6
6 0.02 122.0 122.1 16.4 0.647 0.004 0.325 120.6
6 0.04 141.9 141.5 19.9 0.167 0.047 0.630 139.1
6 0.06 159.9 159.0 23.1 0.020 0.193 0.851 161.3
6 0.08 178.6 177.2 26.8 0.003 0.480 0.949 170.0
6 0.10 193.7 192.4 29.1 0.000 0.692 0.988 183.3

Notes: A total 1,000 data sets simulated for each of 12 parameter and data configurations. Data consisted of r counts at n ¼ 50 sites, with
Ni �Poisðk ¼ 100Þ animals at site i. Individuals counted 0, 1, or 2 times, with probabilities 0.58, 0.42�c and c; c ¼ 0 is the baseline case,
with data generated according to the basic N-mixture model. Columns labeled kMLE, k̂, and SDðk̂Þ give the means of the maximum likeli-
hood estimator, the posterior median and posterior standard deviation, respectively. Column “Nom 95%” gives the coverage rate of nominal
95% credible intervals. Columns labeled PB\0:05 and P�

B\0:05 give the proportion of times tests based on the usual and calibrated Baye-
sian P-values reject the adequacy of the N-mixture model, at nominal level a ¼ 0:05. Column k̂NS corresponds to column k̂, but with the
mean taken only over simulations where P�

B [ 0:05.
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sizes at sites, are the most troubling of our three simulations.
Once again, estimation of k is badly biased when the
N-mixture model assumption has been even slightly violated
(q\1). Coverage rates for nominal 95% CIs drop off quickly
and bias increases rapidly as q decreases. The Bayesian
P-value, even in its calibrated version, shows little ability to
detect even the most extreme violations of model assump-
tions. Even with as much variation between visits as among
sites ðq ¼ 0:5Þ, the power to detect inadequacy of the base-
line model is only 16% and 20% with r ¼ 3 and 6, respec-
tively; in these cases, the expected value of the estimator is
more than twice the true value.

Simulation 3: unmodeled variation in pij .—Our final set of
simulations addressed unmodeled variation in detection
probability. The levels of variability in these simulations
were small. With r ¼ 0:02, more than 80% of pijs fall in the
range (0.394,0.446). Nevertheless, r ¼ 0:02 is sufficient to
produce 19% and 21% additional bias (beyond small sample

bias) in estimation of k, for r ¼ 3 and 6, respectively. At the
same time, these configurations of parameters provide little
power to distinguish the data from such as are generated
assuming the N-mixture model is correctly specified.

DISCUSSION

It is (almost) never the case that a mathematical model is
a perfect depiction of reality. Often, we are able to say “close
enough’’ and not worry too much. The simulations reported
here indicate that such is not the case for N-mixture models.
The model specification Yij �BðNi; pÞ has three parts: B for
binomial, Ni for constant abundance by site, and p for con-
stant detectability. Our simulations address violations of
assumption B, Ni, or p. Small, undetectable violations of
any of these can lead to substantial biases. A 2% rate of dou-
ble counts or a standard deviation of 2% in detection rates
might seem insubstantial, but each is large enough to pro-
duce >20% bias in estimation of mean abundance. To make

TABLE 2. Effects of unmodeled variation in abundance within sites.

r q kMLE k̂ SDðk̂Þ Nom 95% PB\0:005 P�
B\0:05 k̂NS

3 1.00 105.1 106.5 21.8 0.951 0.000 0.050 105.9
3 0.90 119.9 120.6 26.3 0.890 0.000 0.064 119.9
3 0.80 137.6 137.5 33.5 0.777 0.004 0.089 136.1
3 0.50 232.6 234.8 57.6 0.242 0.014 0.160 230.5
3 0.20 741.7 491.5 96.2 0.029 0.034 0.237 462.2
3 0.10 918.0 617.2 108.5 0.011 0.041 0.243 580.0
6 1.00 101.3 101.7 12.4 0.956 0.000 0.050 101.6
6 0.90 114.6 114.9 16.2 0.843 0.000 0.072 114.6
6 0.80 130.5 130.2 21.2 0.582 0.000 0.121 129.8
6 0.50 222.6 218.2 46.7 0.024 0.003 0.201 218.3
6 0.20 670.7 565.9 102.1 0.000 0.033 0.292 559.0
6 0.10 1019.0 1015.2 129.4 0.000 0.049 0.323 993.0

Notes: A total of 1,000 data sets simulated for each of 12 parameter and data configurations. Data consisted of r counts at n ¼ 50 sites,
with Nij ¼ mi þ Aij animals at site i, occasion j, with mi �Poisðh1Þ and Aij �Poisðh2Þ. k ¼ h1 þ h2 ¼ 100, and q ¼ h1=k. q ¼ 1 is the baseline
case, with data generated according to the basic N-mixture model. Data are counts Yij �BðNij ; pÞ with p ¼ 0:42. Columns labeled kMLE, k̂
and SDðk̂Þ, give the means of the maximum likelihood estimator, the posterior median, and posterior standard deviation, respectively. Col-
umn “Nom 95%” gives the coverage rate of nominal 95% credible intervals. Columns labeled PB\0:05 and P�

B\0:05 give the proportion of
times tests based on the usual and calibrated Bayesian P-values reject the adequacy of the N-mixture model, at nominal level a ¼ 0:05. Col-
umn k̂NS corresponds to column k̂, but with the mean taken only over simulations where P�

B [ 0:05.

TABLE 3. Effects of unmodeled variation in detection probability.

r r kMLE k̂ SDðk̂Þ Nom 95% PB\:005 P�
B\0:05 k̂NS

3 0.00 105.1 106.5 21.8 0.951 0.000 0.050 105.9
3 0.01 110.4 111.6 24.1 0.952 0.001 0.066 110.7
3 0.02 126.2 126.5 29.1 0.846 0.013 0.219 125.3
3 0.03 154.8 154.2 37.5 0.552 0.131 0.584 147.6
3 0.04 200.8 199.6 48.2 0.172 0.579 0.917 200.0
6 0.00 101.3 101.7 12.4 0.956 0.000 0.050 101.6
6 0.01 107.0 107.3 13.6 0.921 0.000 0.113 106.9
6 0.02 123.4 123.3 17.6 0.655 0.003 0.324 121.8
6 0.03 153.7 152.4 24.4 0.131 0.187 0.808 151.7
6 0.04 201.9 198.6 34.7 0.002 0.844 0.992 209.0

Notes: A total of 1,000 data sets simulated for each of 10 parameter and data configurations. Data consisted of r counts at n ¼ 50 sites,
with Nij �Poisðk ¼ 100Þ animals at site i. Data are counts Yij �BðNi ; pijÞ; pij are beta-distributed random variables with mean p ¼ 0:42 and
standard deviation r. r ¼ 0 is the baseline case, with data generated according to the basic N-mixture model. Columns labeled kMLE, k̂ and
SDðk̂Þ give the means of the maximum likelihood estimator, the posterior median, and posterior standard deviation, respectively. Column
“Nom 95%” gives the coverage rate of nominal 95% credible intervals. Columns labeled PB\0:05 and P�

B\0:05 give the proportion of times
tests based on the usual and calibrated Bayesian P-values reject the adequacy of the N-mixture model, at nominal level a ¼ 0:05. Column
k̂NS corresponds to column k̂, but with the mean taken only over simulations where P�

B [ 0:05.
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matters worse, there is little power to detect such violations
of model assumptions through goodness-of-fit tests.
Our attention to the N-mixture models is prompted by

their obvious and critical dependence on assumptions in
place of data. There is no such thing as a free lunch: extra
data have been replaced with extra assumptions, and the
assumptions are stringent. Small, undetectable violations of
assumptions lead to substantial biases. Similar concerns
regarding N-mixture models are being expressed by other
authors (Duarte et al. 2018, Knape et al. In Review).
A natural response to the findings reported here is to sug-

gest that one can always build a bigger model. If violating
an assumption leads to biases, well, construct a bigger
model that describes those violations, and you’re all set. But
this requires an idea of which assumptions are being vio-
lated, and the capacity to detect failures of the base model
before the biases become too large. We have not addressed
covariate models or other more highly structured models,
such as the Dail-Madsen model (Dail and Madsen 2011) in
our examples. It seems reasonable to assume that the risks
of model misspecification increase as model complexity
increases; robustness isn’t increased by complexity.
The sensitivity of N-mixture models to violations of

model assumptions might arise from their dependence on
higher order moments for identifiability. A binomial random
variable X �BðN; pÞ has mean l ¼ Np and variance
r2 ¼ Npð1� pÞ. It follows that

N ¼ l2

l� r2 : (1)

Taken alone, the mean value of X is inadequate for estima-
tion of N. Eq. 1 shows that it is the relation between mean
and variance that makes N an identifiable parameter. Given
replicate values, we may substitute sample mean and variance
in the right-hand side of Eq. 1 to obtain a moment estimator
N̂. The estimator is asymptotically normally distributed and
consistent. However, unmodeled variation that increases the
variance relative to the mean decreases the denominator on
the right-hand side of Eq. 1, inflating the estimator.
It was inspection of Eq. 1 that led us to undertake the first

of our three sets of simulations. Let Y denote the number of
animals recorded, including double counts. With detection
probability p ¼ 1� a and accidental double count parameter
c, it is easily shown that the mean and variance of Y are
Nðpþ cÞ and N pð1� pÞ þ cð3� c� 2pÞð Þ, rather than Np
and Npð1� pÞ. Substituting the mean and variance of Y in
the right-hand side of Eq. 1 with p ¼ 0:42 and c ¼ 0:02, one
obtains 1.26N rather than N. This suggests a 26% bias, a
value which was nearly matched in our simulations.
Goodness-of-fit testing is always good practice, but seems

especially necessary in context of the N-mixture models. Of
course, the failure to find evidence of inadequate fit doesn’t
confirm the adequacy of a model. What is worrisome is

the case where a small, undetectable violation of model
assumptions can have large consequences for inference; this
appears to be possible with the N-mixture models.
In discussing N-mixture models, K�ery and Royle (2015;

Chapter 6) suggest the use of simulation studies as a part of
study design, and as means to evaluate potential bias resulting
from model misspecification. To their advice, we would add
that investigators conduct simulation studies like those done
in this paper to see whether small violations of assumptions
can be detected. Our results strongly suggest the possibility
that minor violations of assumptions - a 2% rate of accidental
double counts, or an unmodeled standard deviation of 2% in
detection probabilities - can have profound consequences for
inference, but be virtually undetectable from the data.

ACKNOWLEDGMENTS

We thank Jim Nichols, Evan Cooch, Len Thomas, two anony-
mous reviewers, and Subject Matter Editor Brett McClintock for
their helpful comments. Any use of trade, firm, or product names is
for descriptive purposes only and does not imply endorsement by
the U.S. Government.

LITERATURE CITED

Barker, R. J., M. R. Schofield, W. A. Link, and J. R. Sauer. 2017.
On the reliability of N-mixture models for count data. Biometrics
74:369–377.

Dail, D., and L. Madsen. 2011. Models for estimating abundance
from repeated counts of an open metapopulation. Biometrics
67:577–587.

Duarte, A., M. J. Adams, and J. T. Peterson. 2018. Fitting N-mixture
models to count data with unmodeled heterogeneity: bias, diagnos-
tics, and alternative approaches. Ecological Modelling 374:51–59.

Fiske, I., and R. Chandler. 2011. unmarked: an R package for fit-
ting hierarchical models of wildlife occurrence and abundance.
Journal of Statistical Software 43:1–23.

Hjort, N. L., F. A. Dahl, and G. H. Steinbakk. 2006. Post-proces-
sing posterior predictive p values. Journal of the American Statis-
tical Association 101:1157–1174.

Hostetler, J. A., and R. B. Chandler. 2015. Improved state-space
models for inference about spatial and temporal variation in
abundance from count data. Ecology 96:1713–1723.

K�ery, M., and J. A. Royle. 2015. Applied hierarchical modeling in
ecology: analysis of distribution, abundance, and species richness
in R and BUGS. Volume 1: prelude and static models. Academic
Press, Cambridge, Massachusetts, USA.

Nott, D. J., C. C. Drovandi, K. Mengersen, and M. Evans. 2018.
Approximation of Bayesian predictive p-values with regression
ABC. Bayesian Analysis 13:59–83.

Riddle, J. D., J. H. Pollock, and T. R. Simons. 2010. An unrecon-
ciled double-observer method for estimating detection probability
and abundance. Auk 127:841–849.

Royle, J. A. 2004. N-mixture models for estimating population size
from spatially replicated counts. Biometrics 60:108–115.

Yamaura, Y., M. K�ery, and J. A. Royle. 2016. Study of biological
communities subject to imperfect detection: bias and precision of
community N-mixture abundance models in small-sample situa-
tions. Ecological Research 31:289–305.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at http://onlinelibrary.wiley.com/doi/10.1002/ecy.
2362/suppinfo

July 2018 ROBUSTNESS OF N-MIXTURE MODELS 1551
S
ta

tistica
lR

ep
orts

 19399170, 2018, 7, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.2362 by C

olorado State U
niversity, W

iley O
nline L

ibrary on [25/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://onlinelibrary.wiley.com/doi/10.1002/ecy.2362/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/ecy.2362/suppinfo
https://esajournals.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fecy.2362&mode=

